TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2023

Vector Quantization for Autoregressive Modeling

Autoregressive Image and Voice Modeling

Strong VAE image modeling was first achieved with autoregressive token modeling.

> van den Oord, Vinyals and Kavukcuoglu, Neural Discrete Representation Learning, 2017

VQ-VAE-2, June 2019

Generating Diverse High-Fidelity Images with VQ-VAE-2

Figure 1: Class-conditional 256x256 image samples from a two-level model trained on ImageNet.

VAE Tokenization of Images and Voice

Let y range over a population (such as images or sound waves).

Assume that a given y is encoded as a tensor denoted $z_{\text{enc},p}(y)$ where p is a "position in y " (a pixel in an image tensor or time window in a sound tensor) and $z_{\text{enc},p}(y) \in R^d$ is a vector.

Vector Quantization (Tokenization)

Assume a finite set of K "tokens" where token k has an embedding vector $e(k) \in R^d$.

Define $k_{\text{enc},p}(y)$ by

$$
k_{\text{enc},p}(y) = \underset{k}{\text{argmin}} \frac{1}{2} ||z_{\text{enc},p}(y) - e(k)||^2
$$

Reconstruction Loss

We now have a VAE where the tensor $k_{\text{enc}}(y)$ is the latent variable.

The encoder and decoder are trained jointly.

The prior is a transformer trained after the encoder and decoder are fully trained.

Training the Encoder and Decoder

Taking $P_{\text{dec}}(y|k)$ to be $\mathcal{N}(\hat{y}_{\text{dec}}(k), I)$ we get an L_2 reconstruction loss.

$$
\mathcal{L}_{\text{Rec}} = \frac{1}{2} || y - \hat{y}_{\text{dec}}(e(k(z_{\text{enc}}(y)))) ||^2
$$

Training the Encoder and Decoder

$$
\mathcal{L}_{\text{Rec}} = \frac{1}{2} || y - \hat{y}_{\text{dec}}(e(k(z_{\text{enc}}(y)))) ||^2
$$

Because the tokens are discrete we do not get any gradient on $z_{\rm enc}(y)$.

Straight-Through Gradients

$$
\mathcal{L}_{\text{Rec}} = \frac{1}{2} || y - \hat{y}_{\text{dec}}(e(k(z_{\text{enc}}(y)))) ||^2
$$

$$
z_{\mathrm{enc},p}(y).\mathrm{grad} = \nabla_{e(k(z_{\mathrm{enc},p}(y)))}\mathcal{L}_{\mathrm{Rec}}
$$

K-Means Gradients

We train $z_{\text{enc}}(y)$ and the token embeddings $e(k)$.

$$
\mathcal{L}_{\text{Rec}} = \frac{1}{2} || y - \hat{y}_{\text{dec}}(e(k(z_{\text{enc}}(y)))) ||^2
$$

$$
z_{\mathrm{enc},p}(y).\mathrm{grad} = \nabla_{e(k(z_{\mathrm{enc},p}(y)))}\mathcal{L}_{\mathrm{Rec}}
$$

$$
\mathcal{L}_{\text{KM}} = \frac{1}{2} ||z_{\text{enc},p}(y) - e(k(z_{\text{enc},p}))||^2
$$

$$
e(k(z_{\text{enc},p}(y))).\text{grad } \text{+} = \beta \nabla_{e(k(z_{\text{enc},p}(y)))} \mathcal{L}_{KM}
$$

$$
\beta \text{ is a hyper-parameter that adjust the relative learning rates.}
$$

Transformer Training

Finally we hold the encoder fixed and train the prior $P_{\text{pri}}(z)$ to be an auto-regressive model of the symbolic image $k_{\text{enc}}(s)[X, Y]$.

Tokenization and Gaussian Mixture Models (GMMs)

Consider modeling $P(y|x)$ with $y \in R^d$

A Gaussian model has the form

$$
y = \hat{y}(x) + \sigma \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)
$$

$$
\hat{y} = \underset{\hat{y}}{\operatorname{argmin}} \ E_{x,y} ||\hat{y}(x) - y||^2
$$

Tokenization and Gaussian Mixture Models (GMMs)

Now consider a tokenizing decoder

$$
y = E_{k \sim P_{\text{dec}}(k|x)}[e(k) + \sigma \epsilon], \quad \epsilon \sim \mathcal{N}(0, I)
$$

We get that $P_{\text{dec}}(y|x)$ is a Gaussian mixture model (GMM).

GMMs are significantly more expressive than single Gaussians.

Wav2Vec 2.0, June 2020, Facebook

Trained on 53k hours of unlabeled audio (no text) they convert speech to a sequence of discrete quantized vectors they call "pseudo-text units".

By training on only one hour of human-transcribed audio, and using the Wav2Vec transcription into pseudo-text, they outperform the previous state of the art in word error rate for 100 hours of human-transcribed text.

VQGAN, December 2020, Heidelberg University

Taming Transformers for High-Resolution Image Synthesis, Patrick Esser, Robin Rombach, Björn Ommer

VQGAN is now the default tokenizer for images and sounds. It achieves a coarser tokenization (fewer tokens) by replacing the reconstruction loss with a "perceptual loss" and adding a GAN discriminator to the loss function.

DALLE-1, January 2021

TEXT PROMPT

an illustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED **IMAGES**

Edit prompt or view more images +

an armchair in the shape of an avocado.... **TEXT PROMPT**

Edit prompt or view more images +

GLSM, February 2021, Facebook

Generative Spoken Language Model (GSLM)

They then train a generative model of the sequences of pseudotext units learned from unlabeled audio.

This model can continue speech from a speech prompt in much the same way that GPT-3 continues text from a text prompt.

Semantic and grammatical structure in a "unit language model" is recovered from speech alone.

Parti, June 2022

Scaling Autoregressive Models for Content-Rich Text-to-Image Generation Yu et al.

CM3Leon, September 2023

Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning

Yu et al.

Voice-Text Language Model (VoxtLM), September 2023

This is similar to CM3Leon but for voice and text rather than images and text.

Voice is tokenized and then a transformer is used to model sequences that alternate voice and text.

END