
TTIC 31230 Fundamentals of Deep Learning
Quiz 3

Problem 1: Generalization Bounds and The Lottery Ticket Hypoth-
esis. Suppose that we want to construct a linear classifier (a linear threshold
unit) for binary classification defined by

ŷα(x) =

 1 if
∑d
i=1 αifi(x) >= 0

−1 otherwise

where each αi is a scalar weight, fi(x) is a scalar value, and the functions fi are
(random) features constructed independent of any observed values of x or y.
We will assume a population distribution Pop of pairs 〈x, y〉 with y ∈ {−1, 1}
and a training set Train of N pairs drawn IID from pop.
We can define both test and train losses (error rates).

L̂(α) = Ex,y∼Train 1[ŷα(xi) 6= yi]

L(α) = Ex,y∼Pop 1[ŷα(xi) 6= yi]

Assume finite precision arithmetic so that we have discrete rather than continu-
ous possible values of α. The course slides state that for any (prior) distribution
P on the values of α we have that with probability at least 1− δ over the draw
of the training data the following holds simultneously for all α.

L(α) ≤ 10

9

(
L̂(α) +

5Lmax

N

(
− lnP (α) + ln

1

δ

))
We will now incorporate the lottery ticket hypothesis into the prior distribution
on α by assuming that low training error can be achieved with some small subset
of the random features. More formally, we define a prior favoring sparse α —
cases where most weights are zero.

(a) To define P (α), first define a prior probability distribution P (s) over the
number s of nonzero values.

Solution: There are of course many solutions. A uniform distribution on
the numbers from 1 to d will work giving P (s) = 1/d. Another possibility is
P (s) = ε(1− ε)s which defines a distribution on all s ≥ 0.

(b) Given a specified number s of nonzero values, define a probability distribu-
tion P (U |s) where U is a subset of the random features with |U | = s.

Solution: A reasonable choice here is a uniform distribution on the
(
d
s

)
possi-

bilities giving P (U |s) = 1/
(
d
s

)
.
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(c) Assuming that each nonzero value is represented by b bits, give a probability
distribution over P (α|U, s).

Solution: Here we can use the uniform distribution on the 2bs ways of assigning
numbers to the s nonzero weights in α giving P (α|U, s) = P (α|U) = 2−bs.

(d) Combine (a), (b) and (c) to define P (α).

Solution: Under P (s) = 1/d we get P (α) = 1

d(d
s)2bs

and using
(
d
s

)
≤ ds we get

P (α) ≥ 1
dds2bs

= 1
ds+12bs

.

Under P (s) = ε(1−ε)s we get P (α) = ε(1−ε)s

(d
s)2bs

and using
(
d
s

)
≤ ds P (α) ≥ ε(1−ε)s

ds2bs

(e) Plug your answer to (c) into the above generalization bound to get a bound
in terms of the number of random features d, the number s of nonzero values
of α, and the number b of bits used to represent each nonzero value and any
additional parameters used in defining your distributions.

Solution: Under P (s) = 1/d we get

L ≤ 10

9

(
L̂+

5

N

(
ln d+ ln

(
d

s

)
+ sb ln 2 + ln

1

δ

))

≤ 10

9

(
L̂+

5

N

(
(s+ 1) ln d+ sb ln 2 + ln

1

δ

))
Under P (s) = ε(1− ε)s we get

L ≤ 10

9

(
L̂+

5

N

(
ln

1

ε
+ s ln

1

1− ε
+ ln

(
d

s

)
+ sb ln 2 + ln

1

δ

))

≤ 10

9

(
L̂+

5

N

(
ln

1

ε
+ s ln

1

1− ε
+ s ln d+ sb ln 2 + ln

1

δ

))
Note that in either case the bound is logarithmic in d allowing d to be extremely
large. The choice of the uniform distribution for s is simpler and gives a com-
pletely satisfactory result. However there are regimes in which the second prior
on s is very slightly better.

Problem 2. Computing the Partition Function for a Chain Graph.
Consider a graphical model defined on a sequence of nodes n1, . . . , nT . We are
interested in “colorings” Ŷ which assign a color Ŷ[n] to each node n. We will
use y to range over the possible colors. Suppose that we assign a score s(Ŷ) to
each coloring defined by

s(Ŷ) =

(
T∑
t=1

SN [t, Ŷ[nt]]

)
+

(
T−1∑
t=1

SE [t, Ŷ[nt], Ŷ[nt+1]]

)
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In this problem we derive an efficient way to exactly compute the partition
function

Z =
∑
Ŷ

es(Ŷ).

Let Ŷt range over colorings of n1, . . . nt and define the score of Ŷt by

s(Ŷt) =

(
t∑

s=1

SN [s, Ŷ[ns]]

)
+

(
t−1∑
s=1

SE [s, Ŷt[ns], Ŷt[ns+1]]

)
Now define Zt(y) by

Z1(y) = eS
N [1,y]

Zt+1(y) =
∑
Ŷt

es(Ŷt)eS
E [t,Ŷt[nt],y]eS

N [t+1,y]

(a) Give dynamic programming equations for computing Zt(y) efficiently. You
do not have to prove that your equations are correct — just writing the correct
equations gets full credit.

Solution:

Z1(y) = eS
N [1,y]

Zt+1(y) = eS
N [t+1,y]

∑
y′

Zt(y
′)eS

E [t,y′,y]

(b) show that Z =
∑
y ZT (y)

Solution: ∑
y

ZT (y) =
∑
y

∑
ŶT−1

es(ŶT−1)eS
E [t,Ŷt[nt],y]eS

N [t+1,y]

=
∑

y
∑
Ŷ

es(Ŷ[nT=y])

=
∑
Ŷ

es(Ŷ)

= Z
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Problem 3. Reshaping Noise in GANs. A GAN generator is typically
given a random noise vector z ∼ N (0, I). Give equations defining a method
for computing z′ from z such that the distribution on z′ is a mixture of two
Gaussians each with a different mean and diagonal covariance matrix. Hint:
use a step-function threshold on the first component of z to compute a binary
value and use the other components of z to define the Gaussian variables.

Solution:

y = 1[z[0] ≥ 0]

z′ = y(µ1 + σ1 � z[1 : d]) + (1− y)(µ2 + σ2 � z[1 : d])
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