TTIC 31230 Fundamentals of Deep Learning
Quiz 3

Problem 1: Generalization Bounds and The Lottery Ticket Hypoth-
esis. Suppose that we want to construct a linear classifier (a linear threshold
unit) for binary classification defined by

1 if Z?:l Oéifi(l‘) >=0
Ja(T) =
—1 otherwise

where each «; is a scalar weight, f;(x) is a scalar value, and the functions f; are
(random) features constructed independent of any observed values of x or y.
We will assume a population distribution Pop of pairs (x,y) with y € {—1,1}
and a training set Train of N pairs drawn IID from pop.

We can define both test and train losses (error rates).

£(Oé) = Em,yNTrain 1[:&01(371) 7é yl]

L{a) = Ez y~pop 1Ja(z:) # yil

Assume finite precision arithmetic so that we have discrete rather than continu-
ous possible values of a. The course slides state that for any (prior) distribution
P on the values of a we have that with probability at least 1 — § over the draw
of the training data the following holds simultneously for all a.

L(o) < % ([I(a) + 5LJ’\'[‘”‘ (—lnP(a) +1In ;))

We will now incorporate the lottery ticket hypothesis into the prior distribution
on a by assuming that low training error can be achieved with some small subset
of the random features. More formally, we define a prior favoring sparse o —
cases where most weights are zero.

(a) To define P(«), first define a prior probability distribution P(s) over the
number s of nonzero values.

Solution: There are of course many solutions. A uniform distribution on
the numbers from 1 to d will work giving P(s) = 1/d. Another possibility is
P(s) = €(1 — €)® which defines a distribution on all s > 0.

(b) Given a specified number s of nonzero values, define a probability distribu-
tion P(U|s) where U is a subset of the random features with |U| = s.

Solution: A reasonable choice here is a uniform distribution on the (‘f) possi-
bilities giving P(Ul|s) = 1/(?)



(¢) Assuming that each nonzero value is represented by b bits, give a probability
distribution over P(c|U, s).

Solution: Here we can use the uniform distribution on the 2°% ways of assigning
numbers to the s nonzero weights in « giving P(a|U, s) = P(a|U) = 27%.

(d) Combine (a), (b) and (c) to define P(«).

Solution: Under P(s) = 1/d we get P(a) = —z+-— and using (d) < d* we get

(@) \ e
Pla) >

1 —
ddebS - da+'12bo"

Under P(s) = e(1—¢€)® we get P(«a) = 5((5)72? and using (?) < d* P(a) > E(dlgf)
(e) Plug your answer to (c) into the above generalization bound to get a bound
in terms of the number of random features d, the number s of nonzero values
of «, and the number b of bits used to represent each nonzero value and any
additional parameters used in defining your distributions.

Solution: Under P(s) = 1/d we get

10/, 5 d 1
< = = , : -
L < 9 (£+N<1nd+1n<s)+s‘bln2+ln6>>

10 [ 4
< =
< (.c n -

2| e

9 <(¢9+1)lnd+sbln2+ln1)>

Under P(s) = ¢(1 —€)® we get

10 / 4 5 1 1 d 1
< = —(In—+s 1 1 In -
L < 9<£+N<ne+alnlé+ n(s)—&—sbn2+ n6>>
10 / 4 5 1 1
< = = - ; -
< 3 <£+N (hlE +slnl_€+slnd+5b1n?+ln($>>

Note that in either case the bound is logarithmic in d allowing d to be extremely
large. The choice of the uniform distribution for s is simpler and gives a com-
pletely satisfactory result. However there are regimes in which the second prior
on s is very slightly better.

Problem 2. Computing the Partition Function for a Chain Graph.
Consider a graphical model defined on a sequence of nodes ny,...,ny. We are
interested in “colorings” Y which assign a color Y[n] to each node n. WeA will

use y to range over the possible colors. Suppose that we assign a score s()) to
each coloring defined by

“) - (2 sN[t,ﬂnm) N (i sE[t,y[nt],mﬂu)



In this problem we derive an efficient way to exactly compute the partition

function
7 - Z prley)
hY
Let ), range over colorings of n1, . ..n; and define the score of ), by

W) = (ZSN[s,ﬁ[ns ) (ZsE Vilns), yt[nsﬂ]])

Now define Z;(y) by

Zily) = e
Zialy) = 3 TSIVl SN 1]
Y

(a) Give dynamic programming equations for computing Z;(y) efficiently. You
do not have to prove that your equations are correct — just writing the correct
equations gets full credit.

Solution:

Zi) = 0

Zia(y) = eS™It+1.9] Z Zt(y’)esE[f’y’,y]

y/

(b) show that Z = >> Zr(y)

Solution:

ZZT(?/) = Z Z °(YT 1), SEEYind,y Yl oS Nit+1,y)
Yy

Y Yr_y

Sy S e lnr=
RY
_ Zes(ﬁ)
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Problem 3. Reshaping Noise in GANs. A GAN generator is typically
given a random noise vector z ~ N(0,1). Give equations defining a method
for computing 2z’ from z such that the distribution on 2’ is a mixture of two
Gaussians each with a different mean and diagonal covariance matrix. Hint:
use a step-function threshold on the first component of z to compute a binary
value and use the other components of z to define the Gaussian variables.

Solution:

y = 1[z[0]>0]

o= oyl +o10z[1:d])+ (1—y)(p2+02©2[1:d)



