
TTIC 31230 Fundamentals of Deep Learning
Quiz 4

Problem 1: Upper Bounding H(y)

We consider a population distribution Pop on a set of observable values y and a
stochastic encoder defining a conditional distribution PΨ(z|y). We assume that
we can sample from PΨ(z|y) and that for any given z and y we can compute
PΨ(z|y). The population and the encoder define a joint distribution PPop,Ψ(y, z)
where y is drawn from the population and z is drawn from PΨ(z|y). All prob-
abilities and information-theoretic quantities in this problem refer to this joint
distribution.
We will use the fact that mutual information satisfies

I(y, z) = H(y)−H(y|z) = H(z)−H(z|y)

which implies
H(y) = H(z)−H(z|y) +H(y|z) (1)

(a) Rewrite (1) in terms of expectations over y ∼ Pop and z ∼ PΨ(z|y) of
quantities defined on Pop(y), PPop,Ψ(z), PPop,Ψ(z|y) and PPop,Ψ(y|z).

Solution:

Ey∼Pop −ln Pop(y) = Ey∼Pop, z∼PΨ(z|y) −lnPΨ(z)+lnPPop,Ψ(z|y)−lnPPop,Ψ(y|z)

(b) Which of the terms in (1) can be directly esimated by simply sampling
y ∼ Pop and z ∼ PΨ(z|y).

Solution: Just the middle term H(z|y).

(c) Recall that the cross-entropy H(P,Q) is defined to be Ex∼P − lnQ(x) and
that H(P ) ≤ H(P,Q) for any Q. Let PΦ(z) and PΘ(y|z) be two additional mod-
els and consider the cross entropiesH(PPop,Ψ(z), PΦ(z)) andH(PPop,Ψ(y|z), PΘ(y|z)).
Using the fact that cross-entropies upper bound entropies give an upper bound
on H(y) derived from (1) by replacing entropies by cross-entropies to these
models. Express your upper bound as an expectation over sampling.

Solution:

H(y) ≤ Ey∼Pop, z∼PΨ(z|y) − lnPΦ(z) + lnPΨ(z|y) − lnPΘ(y|z)

(d) Which terms in you solution to (c) can be estimated directly by sampling.

Solution: All
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(e) Consider minimizing the upper bound on H(y) given in your solution to (c).
How is this related the VAE training objective?

Solution: It is exactly the same.

Problem 2. Training Vector Quantization
Vector quantization (VQ) can be interpreted as introducing symbols. It uses
an embedding matrix E[K, I] giving an embedding vector E[k, I] for each of
K discrete “symbols”. To make the notation more compact we will write e(k)
for the embedding vector E[k, I] of the symbol k. We define the quantization
operation to map a vector to the symbol whose embedding is nearest to that
vector.

nearestE(x) = argmin
k

||x− e(k)||

We consider a VQ-VAE where the latent variable is a single symbol (from a
possibly large collection of K symbols). In this case the VQ-VAE optimizes the
following objective.

Φ∗ = argmin
Φ

Ey∼Pop ||y − yΦ(e(nearestE(xΨ(y)))))||2 (2)

Ψ∗ = argmin
Ψ

Ey∼Pop

 ||y − yΦ(e(nearestE(xΨ(y)))))||2

+ β||xΨ(y)− e(nearestE(xΨ(y)))||2
(3)

E∗ = argmin
E

Ey∼Pop ||xΨ(y)− e(nearestE(xΨ(y)))||2 (4)

I have written this as a separate objective function for each component of the
model. The objective for a component defines a gradient for that component.
Multiple simultaneous objectives define a multi-player game. We hope to reach
a Nash equilibrium where this is defined as a parameter setting where all the
objectives have zero gradients — each “player” is doing a locally best (or at
least stationary) response. Multiple objectives can be implemented by putting
stop gradients (detachments) in each objective to prevent the optimization of
one component from affecting the other components.

The objective (3) defines the gradient for Ψ. In VQ-VAE we compute a gradi-
ent for (3) using the “straight-through” gradient for back-propagation through
vector quantization. The VQ straight-through gradient can be written as

∇xf(e(nearestE(x))) ≈ ∇ef(e)|e=e(nearestE(x))

(a) Give an += equation for incorporating e(nearestE x).grad into x.grad.

Solution:
x.grad += e(nearestE(x)).grad.
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(b) Write the SGD update equation for gradient descent on (4) using learning
rate η.

Solution:

e(nearestE(xΨ(y))) += 2η(xΨ(y)− e(nearestE(xΨ(y))))

(c) Assuming η < 1/2, rewrite your solution to (b) in the form of a rolling
average update on e(k) showing that e(k) is a rolling average of the vectors of
the form xΨ(y) satisfying nearestE(xΨ(y)) = k.

Solution: For nearestE(xΨ(y)) = k we have

e(k) = (1− 2η)e(k) + 2ηxΨ(y)

Problem 3: How Advantage-Actor-Critic (A2C) Reduces Variance.
This problem will consider a simple artificial example that demonstrates the
power of the advantage actor-critic algorithm. We start with policy gradient
theorems for the episodic case.

REINFORCE : ∇ΦR(π) = Es0,a0,...,sT ,aT∼πΦ

∑T
t=0(∇Φ lnπΦ(at|st))

(∑T
t′=tR(st, at)

)
A2C : ∇ΦR(π) = Es0,a0,...,sT ,aT∼πΦ

∑T
t=0(∇Φ lnπΦ(at|st)) (Qπ(st, at)− V π(st))

V π(s) = Es0,a0,...,sT ,aT∼πΦ |s0=s,

∑T
t=0R(st, at)

Qπ(s, a) = Es0,a0,...,sT ,aT∼πΦ |s0=s, a0=a

∑T
t=0R(st, at)

In practice we use approximators VΨ(s) and QΘ(s, a) for V π(s) and Qπ(s, a).
But we will ignore that here and just consider V π(s) and Qπ(s, a) as defined
above for which the above equations are exactly true.

We consider an MDP where we want to get to a goal state as quickly as possible.
We consider an MDP where we have two actions a1 and a2 and a policy is just
a biased coin flip between a1 and a2 independent of the state. We also suppose
that a1 always fails to advance, that a2 always advances by one, and that we
reach a goal as soon as we have advances N times. When we reach the goal, but
only when we reach the goal, we get reward −T (or equivalently, cost T ) where
T is the number of actions taken to reach the goal. Of course the best policy
is to always pick a2 which gives N advancements in N actions getting reward
−N (cost N). We define a state s to be the pair (i, t) where t is the number of
actions taken so far and i is the number of advancements made so far.
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(a) Define the state st+1 as a function of st and at. The state transition is
deterministic so don’t worry about formulating this as a probability. Just say
what the next state is in terms of the previous state and the action.

Solution: Let (i, t) be the state st. If the action is a1 then st+1 = (i, t + 1)
and if the action is a2 and st+1 = (i+ 1, t+ 1).

(b) If the stochastic policy picks a2 with probability λ then the expected number
actions taken to advance 1 step is

∑∞
t=1 λ(1− λ)t−1t = 1

λ . Use this fact to give
an expression for V π(i, t). (Remember that the reward, given only at the end,
is −T ).

Solution: From state (i, t) reward occurs when we have made N − i additional
advances. The expected time for each advance is 1

λ . So the expected value of T

given state (i, t) is t+ N−i
λ and so V π(i, t) = −(t+ (N − i)/λ)

(c) It can be shown that Qπ(s, a) = R(s, a) + Es′ |s,aV
π(s′). Use this and your

result from (b) to give an analytic expressions for Qπ(s, a) and the advantage
Aπ(s, a) = Qπ(s, a)− V π(i, t) for a = a1 and a = a2.

Solution: In this example, R(s, a) = 0 except at the end where R((N −
1, t), a2) = −(t+1). So in all but the last step we have Qπ(s, a) = V π(s′) where
s′ is the next state.

Qπ((i, t)a1) = V π(i, t+ 1) = −(t+ 1 + (N − i)/λ)

Qπ((i, t), a2) = V π(i+ 1, t+ 1) = −(t+ 1 + (N − i− 1)/λ)

V π(i, t) = −(t+ (N − i)/λ)

Aπ((i, t, ), a1) = −1

Aπ((i, t, ), a1) =
1

λ
− 1

It turns out that these equations handle the last step as well.

(d) Policy gradient adjusts the probability λ of selecting a2. It is possible that
for some samples of runs the REINFORCE algorithm decreases λ — it moves
the policy in the wrong direction. For example, this happens when λ = 1/2 and
there happens to be are more occurrences of a2 than a1 (note that the reward
is always negative). But the reward (or cost) is correlated with the number of
occurrences of a1 so the expected update is still correct.

Given your answer to (c), is it possible that the A2C update ever reduces λ?
Explain your answer.
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Solution: In this example A2C always increases λ. The update on λ is the
sum of the updates for each time step. In this case each time step behaves
independently because the advantage is determined by the action taken at that
time. At each time step we have that if the action selected is a1 then the
advantage is negative which decreases the probability of a1 and hence increases
the probability of a2. When the action selected is a2 the advantage is positive
and the probability of a2 is again increased.
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